вторник, 20 февраля 2018 г.

Необъяснимые свойства черной дыры

Одним из самых загадочных явлений во Вселенной уже полсотни лет остаются черные дыры. Мы точно не знаем, откуда они взялись и зачем они нужны, однако ученые твердо уверены: решение загадки черных дыр станет тем днем, когда человечество подчинит себе весь космос. Пока же физики могут только предполагать, зачем именно эти невероятные образования «пожирают» звезды и как им удается изменять время.


Творцы

Черные дыры создают новые вселенные. Скорее всего. Такую теорию активно продвигают физики в последний год, а первым эту странную идею высказал Стивен Хокинг. Дело в том, что сингулярность черных дыр нарушает существующие физические законы, а значит их деятельность регулируется в других вселенных. Тех, которые сами дыры и порождают.

Исчезновение

Ученые не могут понять, как именно пропадают черные дыры. Тот же Хокинг еще в 1974 году выяснил, что со временем черная дыра пропадает в окружающем пространстве — но куда она девается никто не понимает.

Замедление времени

Еще одна необъяснимая особенность этих странных космических образований заключается в их способности замедления течения самого времени. Теоретически, у самого горизонта событий черной дыры время для космонавта будет двигаться так быстро, что он может переместиться в будущее.

Контроль населения

Формирование звезды происходит, когда остывает газовое облако. Но излучение черной дыры не дает облакам остывать и тем самым регулирует количество существующих во вселенной звезд. Физики считают, что в этом и может быть практическое назначение черных дыр.

Они громкие

В конце 2003 года астрономы «услышали» странный шум, исходящий от огромной черной дыры в 250 миллионах световых лет от нас. Сейчас предполагается, что черная дыра издает звуки, преобразовывая вещество в энергию.

Источник энергии
Самые смелые физики утверждают, что когда-нибудь человечество научится использовать черные дыры в качестве неиссякаемого источника энергии. Преобразование атомов в субатомные частицы и в самом деле выделяет в пятьдесят раз больше энергии, чем известный нам ядерный синтез.

Игра в бисер

Наш мир немного напоминает конструкторы Lego: все в нем создано из одних и тех же деталей — атомов. Но без черных дыр, которые буквально разбирают материю на составные части, не было бы и субатомных элементов, из которых рождаются звезды. По сути, черная дыра — господь бог в интерпретации физиков.

вторник, 6 февраля 2018 г.

Ученый рассказал, почему «толстеют» черные дыры

В Коуровской астрономической обсерватории на Среднем Урале проходит конференция «Физика Космоса». Среди прочих вопросов, которые задались ее участники, — изучение феномена «толстеющих» черных дыр, одного из самых обсуждаемых в последнее время. Астрономам и физикам удалось выяснить, что в знаниях о черных дырах есть серьезные пробелы. Предполагалось, что эти объекты, которые появляются на месте разорвавшейся звезды, должны иметь массу в разы меньше сгоревшего светила. Теперь же становится ясно, что некоторые дыры, наоборот, тяжелеют. То есть, если вес звезды составлял, к примеру, 40 масс Солнца, то вместо нее должен появиться объект массой 10-20 масс Солнца. Но на деле получается — около 60. Как рассказал Сергей Пилипенко, сотрудник астрокосмического центра физического института академии наук, исследователи продолжают находить сверхмассивные черные дыры. Их размеры могут быть больше некоторых небольших галактик. 


Весят «толстушки» от нескольких миллионов до миллиардов масс Солнца. Спор по поводу их происхождения пока не разрешен. Как предполагают некоторые российские ученые, они возникли в результате слияние своих младших «сестер».

Отметим, что сейчас особо активно изучаются две ближайшие к Земле дыры. Одна находится в самом центре Млечного пути в созвездии Стрельца. Другая — в галактике M 87 (созвездие Девы). Ожидается, что глобальные открытия в этой сфере случатся в ближайшее десятилетие.

воскресенье, 4 февраля 2018 г.

Сверхмассивные черные дыры могут поглощать по одной звезде в год

Исследователи из Колорадского университета в Боулдере, США, открыли механизм, который объясняет устойчивость асимметричных звездных скоплений, окружающих сверхмассивные черные дыры в некоторых галактиках, и позволяет сделать прогноз, согласно которому в период объединения столкнувшихся галактик звезды, обращающиеся вокруг центральной сверхмассивной черной дыры (СМЧД) могут быть поглощены ею и разрушены с частотой порядка одной звезды в год. Гравитация СМЧД формирует околоядерное скопление звезд, которое в соответствии с физикой гравитации должно иметь сферическую симметрию. Однако в некоторых галактиках – включая близлежащую галактику Андромеда – ученые наблюдали вместо сферических скоплений звезд асимметричные скопления, принимающие форму диска. Предполагается, что эксцентричный диск формируется вскоре после столкновения между двумя богатыми газом галактиками.


Внутри этого диска каждая звезда движется по эллиптической орбите, плоскость которой поворачивается относительно черной дыры с течением времени. Орбиты звезд часто накладываются друг на друга и изменяются в результате взаимодействия между звездами. В конечном счете эти изменения накапливаются, и одна из взаимодействующих звезд оказывается расположена слишком близко к черной дыре.

«Мы прогнозируем, что в период после галактического столкновения СМЧД будет поглощать по одной звезде в год, - сказал один из авторов работы Хизер Вернке (Heather Wernke), студент магистратуры Колорадского университета в Боулдере. – Это примерно в 1000 раз чаще, по сравнению с предыдущими оценками».

Эти находки подтверждают наблюдениями предположение о том, что некоторые галактики, в центре которых имеется СМЧД, демонстрируют более высокие скорости поглощения звезд, чем остальные галактики, а также показывают, что эксцентричные околоядерные диски могут быть распространены чаще, чем предполагалось.

суббота, 27 января 2018 г.

Обнаружена неактивная черная дыра

Это первый случай регистрации неактивной черной дыры звездной массы в шаровом скоплении и первое прямое обнаружение черной дыры по ее гравитационному притяжению. Астрономы нашли невидимую черную дыру с массой около четырех солнечных в шаровом скоплении NGC 3201. Об открытии сообщается на сайте European Souther Observatory. Это первый случай регистрации неактивной черной дыры звездной массы в шаровом скоплении и первое прямое обнаружение черной дыры по ее гравитационному притяжению. Сделать открытие ученым помогло необычное поведение звезды в шаровом скоплении NGC 3201 в созвездии Паруса. Такие скопления могут состоять из сотен тысяч звезд, и находятся они на периферии большинства галактик. Это одни из самых старых из известных во Вселенной звездных систем, возникшие еще в начальную эпоху образования и эволюции галактик. Шаровых скоплений достаточно много в нашем Млечном Пути - более 150.



Авторы исследования рассказывают, что изучали скопление с помощью приемника MUSE, смонтированного на телескопе VLT в Чили.

Исследовательская группа обнаружила, что одна из звезд в NGC 3201, приближающаяся к заключительному этапу эволюции, ведет себя очень странно - она двигалась то вперед, то назад относительно наблюдателя с радиальной скоростью в несколько сотен тысяч километров в час, и такое поведение повторялось c периодом в 167 дней.

Ученые объяснили наблюдаемое ими явление присутствием другого объекта рядом.

"Это может быть только черной дырой - первой черной дырой, открытой в шаровом скоплении по прямой регистрации ее гравитационного притяжения", - рассказал руководитель исследования Бенджамина Гизерса Гизерс.

По оценкам ученых, масса звезды в скоплении NGC 3201 составляет около 0,8 солнечных. В этом случае, исходя из измеренных параметров, масса ее компаньона должна достигать около 4,36 солнечных, что хорошо согласуется с предположением о том, что это черная дыра.


Ранее считалось, что большинство черных дыр должно было за короткое время исчезнуть из шаровых скоплений. В условиях отсутствия постоянного звездообразования черные дыры звездных масс быстро становятся самыми массивными объектами.

среда, 24 января 2018 г.

Искусственные гамма-взрывы позволят изучать черные дыры

Миниатюрные гамма-взрывы позволяют ученым изучать черные дыры в лабораторных условиях. Для того, чтобы можно было глубже понять некоторые удивительные явления и процессы, происходящие в глубинах космоса, можно воссоздать и изучить миниатюрные копии этих явлений в лабораторных условиях. Группа исследователей из университета Куинса (Queens University), Белфаст, создала лучи из особого вида плазмы, газа, состоящего не из молекул и атомов, а из смеси элементарных частиц. Лучи этой электронно-позитронной плазмы при некоторых условиях создают сильные постоянные магнитные поля, и их использование позволяет смоделировать космические высокоэнергетические явления, порождающие сильнейшие вспышки гамма-излучения, так называемые гамма-взрывы. В своих экспериментах ученые использовали мощный лазер Gemini, расположенный в лаборатории Рутэрфорда Апплетона, Великобритания. Интенсивный свет этого лазера был направлен в камеру, заполненную гелием, благодаря чему был получен луч высокоэнергетических электронов. Эти электроны были направлены на свинцовую мишень, что привело к образованию электронно-позитронной плазмы, плазмы, состоящей из электронов и позитронов, частиц, являющихся антиподами электронов со стороны антиматерии.


Когда луч электронно-позитронной плазмы был направлен сквозь облако обычной плазмы, состоящей из электронов и ионов, появилось сильнейшее магнитное поле, сопровождающееся гамма-излучением. И ученые считают, что воссозданный ими процесс очень близок к тому, что происходит в непосредственной близости от черных дыр и порождает гамма-взрывы. Только источником лучей электронно-позитронной плазмы в последнем случае являются сами черные дыры.

Во время проведения последних экспериментов ученым удалось впервые увидеть некоторые явления, играющие ключевую роль в деле формирования гамма-взрывов. К этим явлениям относится и самогенерация магнитных полей, благодаря которой эти поля держатся в течение длительного времени. Кроме этого, проведенные учеными измерения послужили подтверждениями некоторых теорий, которые определяют распределение сил и полей различной природы, которые возникают в районах, прилегающих к черным дырам.

Гамма-всплески возникают в отдаленных галактиках и длятся от нескольких секунд до часа. Самый яркий из них — GRB 080319B — наблюдался 19 марта 2008 года и был в течение 30 секунд заметен невооруженным взглядом. При этом источник ГВ находился в галактике, удаленной на 7,5 миллиарда световых лет, что стало рекордом среди далеких объектов, видимых на ночном небе. Возможной причиной всплеска назывался выброс (джет) гамма-лучей, один из пучков которых был направлен на Землю.

Очевидно, что главным недостатком данной работы является отсутствие даже миниатюрного аналога черной дыры. Тем не менее, полученные результаты обеспечивают лучшее понимание природы гамма-взрывов, благодаря чему через некоторое время, проведя анализ параметров сигнала гамма-взрыва, ученые смогут с уверенностью сказать, что же именно является его источником - черная дыра, пульсар, взрыв сверхновой или деятельность внеземной цивилизации.